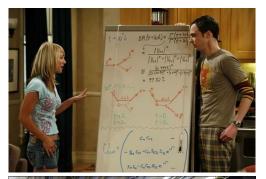


Grid'5000: a Large Instrument for Parallel and Distributed Computing Experiments

Lucas Nussbaum

Université de Lorraine - LORIA - Madynes team

Joint work with G. Antoniu, F. Desprez, Y. Georgiou, D. Glesser, A. Lebre, L. Lefèvre, M. Liroz, D. Margery, C. Perez, L. Pouillioux



Validation in (Computer) Science

Two classical approaches for validation

- Formal: equations, proofs, etc.
- **Experimental**: on a scientific instrument

Validation in (Computer) Science

Two classical approaches for validation

- Formal: equations, proofs, etc.
- Experimental: on a scientific instrument

Often a mix of both

- In Physics
- In Computer Science

Validation in (Computer) Science

Two classical approaches for validation

- Formal: equations, proofs, etc.
- Experimental: on a scientific instrument

Often a mix of both

- In Physics
- In Computer Science

Very little formal validation in distributed computing research

- Our scientific objects often cannot be attacked theoretically
 - Too complex, dynamic, heterogeneous, large

Computer science: an experimental science

Computer science: an experimental science

The reality of computer science

- not just information and algorithms
- also computers, network, programs, etc.

Computer science: an experimental science

The reality of computer science

- not just information and algorithms
- also computers, network, programs, etc.

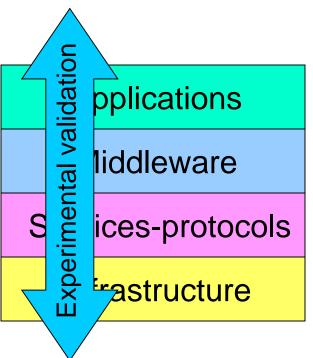
With a huge impact on performance

- Processors: caches, hyperthreading, multi-core
- Operating system: process scheduling, socket implementation, etc.
- Runtime environment: MPICH ≠ OPENMPI
- Middleware
- Various parallel architectures that can be heterogeneous, hierarchical, distributed, dynamic

Research issues at each layer of the stack

Applications

Middleware


Services-protocols

Infrastructure

Research issues at each layer of the stack

Experimentation is hard!

- What is a good experiment?
- Which methodologies, testbeds, tools?

GRID'5000

- Testbed for research on distributed systems
 - Born (2003) from the observation that we need a better and larger testbed
 - High Performance Computing, Grids, Peer-to-peer systems,
 Cloud computing, Big Data
 - A complete access to the nodes' hardware in an exclusive mode
 - RlaaS: Real Infrastructure as a Service!?
 - **Not a Grid**, more like a meta-Grid, or a meta-Cloud: infrastructure to instanciate Grids and Clouds and experiment on them.

GRID'5000

Testbed for research on distributed systems

- Born (2003) from the observation that we need a better and larger testbed
- High Performance Computing, Grids, Peer-to-peer systems,
 Cloud computing, Big Data
- A complete access to the nodes' hardware in an exclusive mode
- RlaaS: Real Infrastructure as a Service!?
- **Not a Grid**, more like a meta-Grid, or a meta-Cloud: infrastructure to instanciate Grids and Clouds and experiment on them.

Funding

INRIA, CNRS, and many local entities (regions, universities)

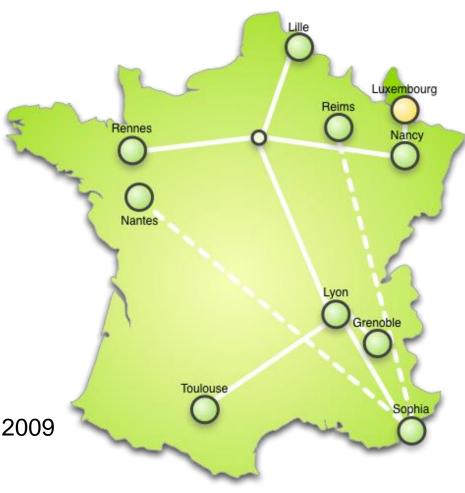
GRID'5000

Testbed for research on distributed systems

- Born (2003) from the observation that we need a better and larger testbed
- High Performance Computing, Grids, Peer-to-peer systems,
 Cloud computing, Big Data
- A complete access to the nodes' hardware in an exclusive mode
- RlaaS: Real Infrastructure as a Service!?
- **Not a Grid**, more like a meta-Grid, or a meta-Cloud: infrastructure to instanciate Grids and Clouds and experiment on them.

Funding

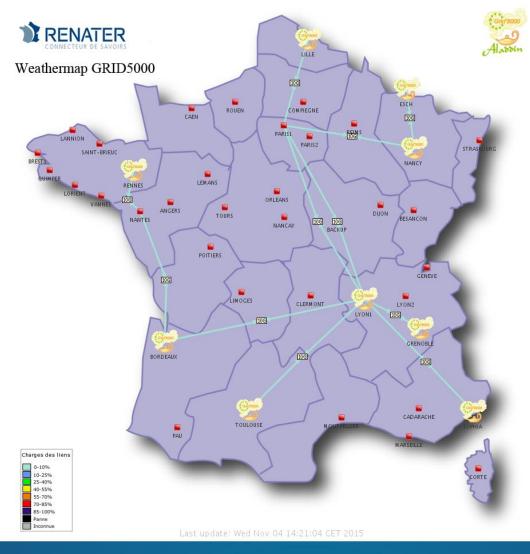
- INRIA, CNRS, and many local entities (regions, universities)
- For research in computer science
 - → focus on how the computation/processing was done, not on the result
 - Free nodes during daytime to prepare experiments
 - Large-scale experiments during nights and week-ends


Current Status

• 10 sites (1 outside France), 25 clusters, 1000 nodes, 8000 cores

Diverse technologies

- Intel, AMD
- CPUs from one to 12 cores
- Ethernet 1G, 10G,
- Infiniband {S, D, Q}DR
- Two GPU clusters
- One Xeon Phi cluster
- 3 data clusters (3-5 disks/node)
- Hardware renewed regularly
- Widely used since 2005
 - More than **500 users** per year
 - More than **750 publications** since 2009



Backbone Network

Dedicated 10 Gbps backbone provided by RENATER (french NREN)

Facets of an Experiment on Grid'5000

- Description and verification of the environment
- Reconfiguring the testbed to meet experimental needs
- Monitoring experiments, extracting and analyzing data
- Improving description and control of experiments

Description and selection of resources

"processor": {

"cache_l2": 8388608, "cache l1": null.

"model": "Intel Xeon",
"instruction set": "",

"other_description": ""
"version": "X3440",
"vendor": "Intel",
"cache_lli": null,
"cache_lld": null,

"uid": "graphene-1",
"type": "node",
"architecture": {

"smt_size": 4,
"smp size": 1

"main memory": {

"storage devices": [

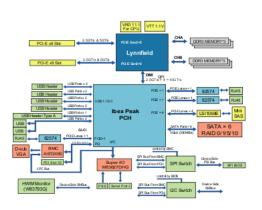
"driver": "ahci", "interface": "SATA II",

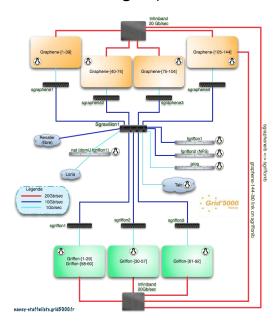
"rev": "JPF0",

],

"device": "sda"

"clock speed": 2530000000.0


"platform_type": "x86_64",


"ram_size": 17179869184, "virtual size": null

"model": "Hitachi HDS72103", "size": 298023223876.953,

Describing resources to understand results

- Detailed description on the Grid'5000 wiki
- Machine-parsable format (JSON)
- Archived (State of testbed 6 months ago?)

- Selecting resources
 - OAR database filled from JSON

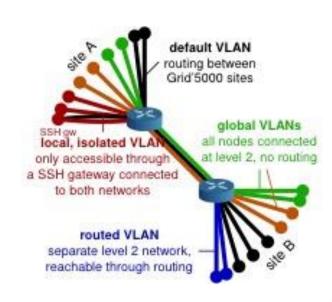
```
oarsub -p "wattmeter='YES' and gpu='YES' »
oarsub -l "cluster='a'/nodes=1+cluster='b' and eth10g='Y'/nodes=2,walltime=2"
```


Verification of resources

Inaccuracies in resources descriptions → dramatic consequences

- Happen frequently: maintenance, broken hardware (e.g. RAM)
- Our solution: g5k-checks
 - Runs at node boot (can also be run manually by users)
 - Retrieves current description of node in Reference API
 - Acquire information on node using OHAI, ethtool, etc.
 - Compare with Reference API

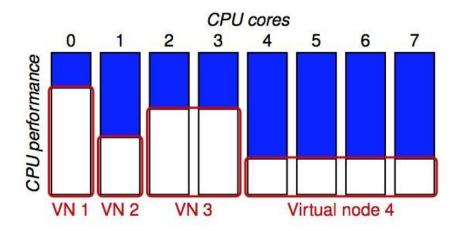
Reconfiguring the testbed

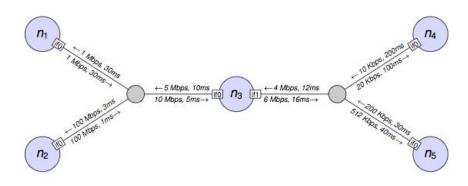

Typical needs

- How can I install \$SOFTWARE on my nodes?
- How can I add \$PATCH to the kernel running on my nodes?
- Can I run a custom MPI to test my fault tolerance work?
- How can I experiment with that Cloud/Grid middleware?
- Likely answer on any production facility: impossible
 - Or: use virtual machines → experimental bias

On Grid'5000

- Operating System reconfiguration with Kadeploy
 - Hardware-as-a-service Cloud!
- Customize networking environment with KaVLAN
 - To isolate your experiment

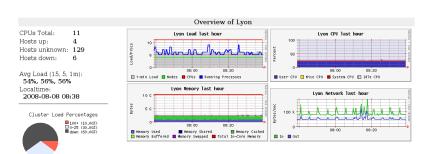


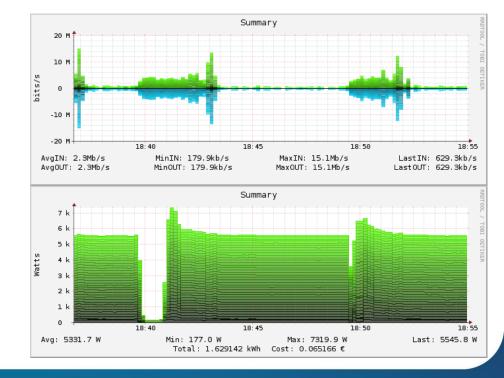


Changing experimental conditions

- Reconfigure experimental conditions with Distem
 - Introduce heterogeneity in an homogeneous cluster
 - Emulate complex network topologies
 - Introduce faults, varying concurrent load

http://distem.gforge.inria.fr/



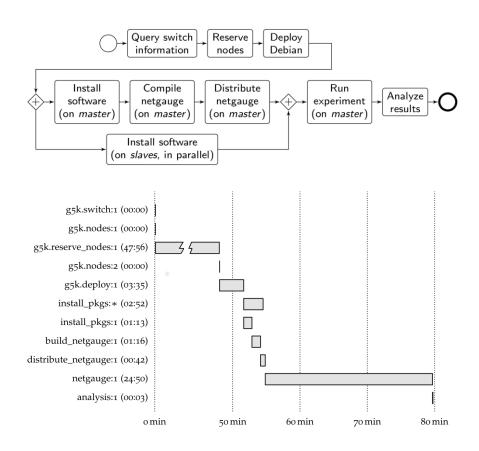

Monitoring experiments

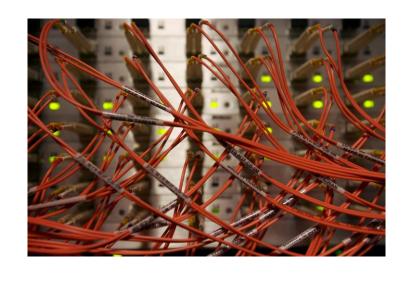
Goal: enable users to understand what happens during their experiment

- System-level probes (usage of CPU, memory, disk, with Ganglia)
- Infrastructure-level probes
 - Network, power consumption
 - Captured at high frequency (1 Hz)
 - Live visualization
 - REST API
 - Long-term storage

Improving description and control of experiments

- Legacy way of performing experiments: shell commands
 - time-consuming
 - error-prone
 - details tend to be forgotten over time
- Promising solution: automation of experiments
 - Executable description of experiments
- Support from the testbed: Grid'5000 RESTful API
 - Resource selection, reservation, deployment, monitoring
- Several projects around Grid'5000 (but not specific to Grid'5000)
 - g5k-campaign, Expo, Execo, XPFlow
 - Facilitate scripting of experiments in high-level languages (Ruby, Python)
 - Testbed management
 - Local & remote execution of commands
 - Data management


XPFlow


Experiments as a Business Workflow

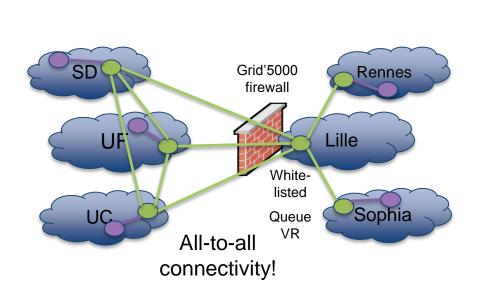
Supports error handling, checkpointing, built-in logging and provenance collection

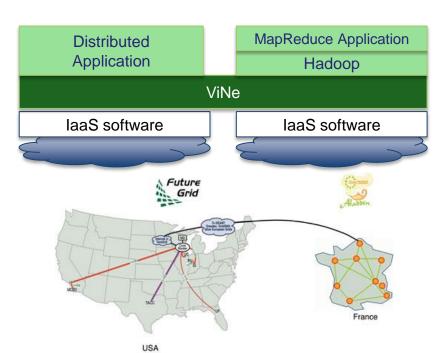
```
engine.process :exp do |site, switch|
    s = run g5k.switch, site, switch
    ns = run q5k.nodes, s
    r = run g5k.reserve nodes,
        :nodes => ns, :time => '2h',
        :site => site, :type => :deploy
    master = (first of ns)
    rest = (tail of ns)
    run g5k.deploy,
        r, :env => 'squeeze-x64-nfs'
    checkpoint :deployed
    parallel :retry => true do
        forall rest do |slave|
            run :install pkgs, slave
        end
        sequence do
            run :install pkgs, master
            run :build netgauge, master
            run :dist netgauge,
                master, rest
        end
    end
    checkpoint :prepared
    output = run :netgauge, master, ns
    checkpoint :finished
    run :analysis, output, switch
end
```


GRID'5000 EXPERIMENTS

Lucas Nussbaum - Grid'5000 05/11/15

VIRTUALIZATION AND CLOUDS



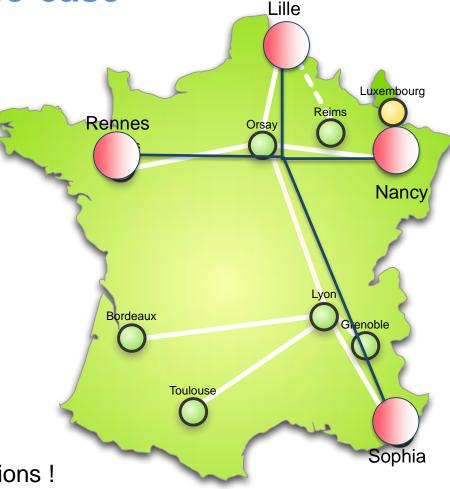

GRID'5000, Virtualization and Clouds: Sky computing use-case

Experiments between USA and France

- Nimbus (resource management, contextualization)/ViNe (connectivity)/Hadoop (task distribution, fault-tolerance, dynamicity)
- FutureGrid (3 sites) and Grid'5000 (3 sites) platforms
- Optimization of creation and propagation of VMs

Large-Scale Cloud Computing Research: Sky Computing on FutureGrid and Grid'5000, by Pierre Riteau, Maurício Tsugawa, Andréa Matsunaga, José Fortes and Kate Keahey, ERCIM News 83, Oct. 2010.

(nría-


Crédits: Pierre Riteau

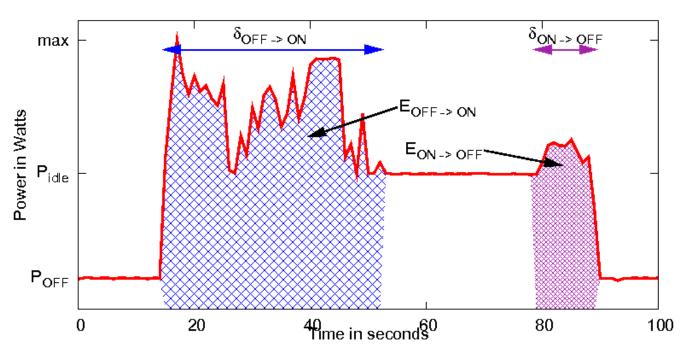
GRID'5000, Virtualization and Clouds: Dynamic VM placement use-case

** ** Grid'5000

Deploy 10240 VMs upon 512 PMs

- Prepare the experiment
 - Book resources
 512 PMs with Hard. Virtualization
 A global VLAN
 A /18 for IP ranges
 - Deploy KVM images and put PMs in the global VLAN
- Launch/Configure VMs
 - A dedicated script leveraging Taktuk utility to interact with each PM
 - G5K-subnet to get booked IPs and assign them to VMs
- Start the experiment and make publications!

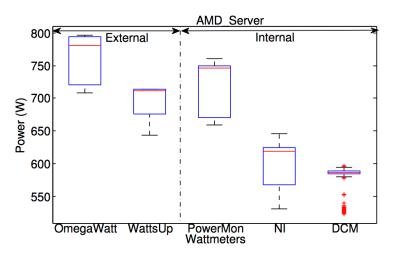
F. Quesnel, D. Balouek, and A. Lebre. **Deploying and Scheduling Thousands of Virtual Machines on Hundreds of Nodes Distributed Geographically**. In IEEE International Scalable Computing Challenge (SCALE 2013) (colocated with CCGRID 2013), Netherlands, May 2013



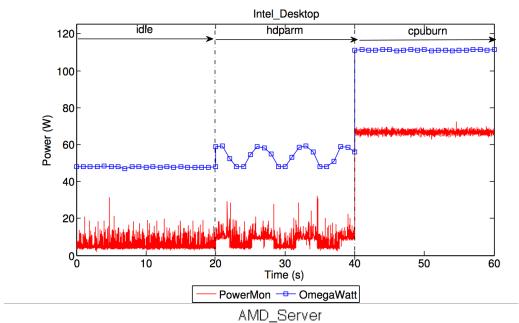
ENERGY MANAGEMENT

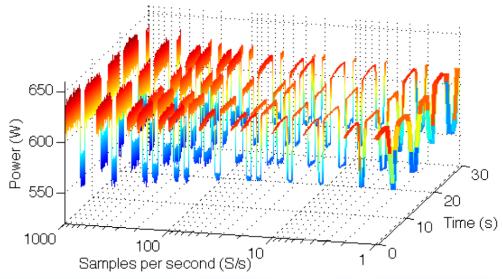
Lucas Nussbaum - Grid'5000 05/11/15

Aggressive ON/OFF is not always the best solution

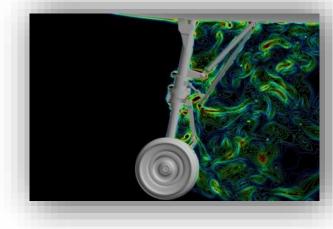

- Exploiting the gaps between activities
- Reducing unused plugged ressources number
- Only switiching off if potential energy saving

Anne-Cecile Orgerie, Laurent Lefevre, and Jean-Patrick Gelas. "Save Watts in your Grid: Green Strategies for Energy-Aware Framework in Large Scale Distributed Systems", ICPADS 2008: The 14th IEEE International Conference on Parallel and Distributed Systems, Melbourne, Australia, December 2008




To understand energy measurements: take care of your wattmeters!

Frequency / precision


M. Diouri, M. Dolz, O. Glück, L. Lefevre, P. Alonso, S. Catalan, R. Mayo, E. Quintan-Orti. Solving some Mysteries in Power Monitoring of Servers: Take Care of your Wattmeters!, EE-LSDS 2013: Energy Efficiency in Large Scale Distributed Systems conference, Vienna, Austria, April 22-24, 2013

Lucas Nussbaum - Grid'5000 05/11/15

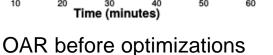
HIGH PERFORMANCE COMPUTING

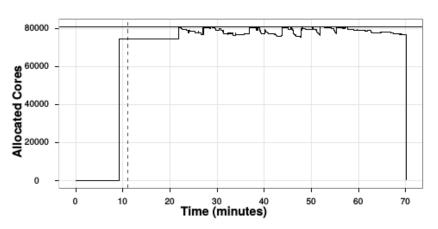
Riplay: A Tool to Replay HPC Workloads

- RJMS: Ressource and Job Management System
 - It manages resources and schedule jobs on High-Performance Clusters
 - Most famous ones: Maui/Moab, OAR, PBS, SLURM

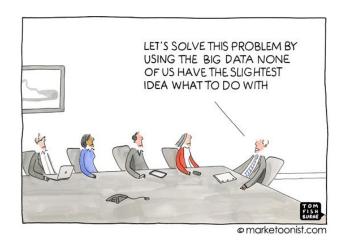
Riplay

- Replay traces on a real RJMS in an emulated environment
- 2 RJMS supported (OAR and SLURM)
- Jobs replaced by *sleep commands*
- Can replay a full or an interval of a workload
- On Grid'5000
 - 630 emulated cores need 1 physical core to run
- Curie (rank 26th on last Top500, 80640 cores)
 - Curie's RJMS can be ran on 128 Grid'5000 cores




Riplay: A Tool to Replay HPC Workloads

- Test RJMS scalability
 - Without the need of the actual cluster.
 - Test a huge cluster fully loaded on a RJMS in minutes.



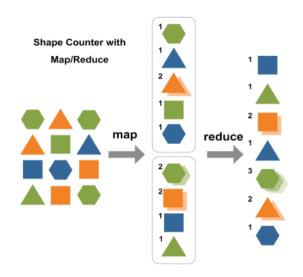
OAR after optimizations

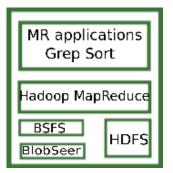
Large Scale Experimentation Methodology for Resource and Job Management Systems on HPC Clusters, Joseph Emeras, David Glesser, Yiannis Georgiou and Olivier Richard

https://forge.imag.fr/projects/evalys-tools/

DATA MANAGEMENT

Scalable Map-Reduce Processing


Goal: High-performance Map-Reduce processing through concurrency-optimized data processing


Some results

- Versioning-based concurrency management for increased data throughput (BlobSeer approach)
- Efficient intermediate data storage in pipelines
- Substantial improvements with respect to Hadoop
- Application to efficient VM deployment

Intensive, long-run experiments done on Grid'5000

- Up to 300 nodes/500 cores
- Plans: validation within the IBM environment with IBM MapReduce Benchmarks

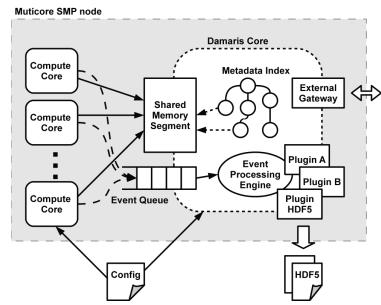
- ANR Project Map-Reduce (ARPEGE, 2010-2014)
- Partners: Inria (teams: KerData leader, AVALON, Grand Large), Argonne National Lab, UIUC, JLPC, IBM, IBCP

mapreduce.inria.fr

Damaris: A Middleware-Level Approach to I/O on Multicore HPC Systems

Idea: one dedicated I/O core per multicore node

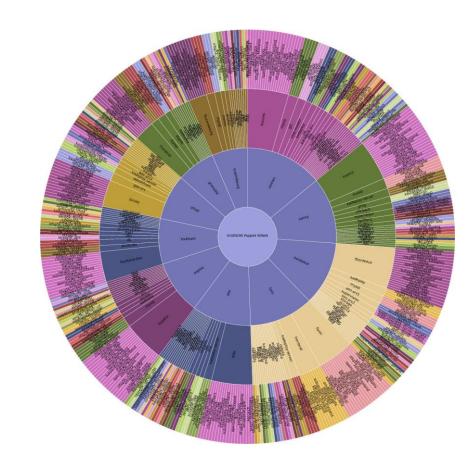
Originality: shared memory, asynchronous


processing

Implementation: software library

Applications: climate simulations (Blue Waters)

Preliminary experiments on Grid'5000



http://damaris.gforge.inria.fr/

CONCLUSIONS

Lucas Nussbaum - Grid'5000 05/11/15

Conclusions

- Computer-Science is also an experimental science
- There are different and complementary approaches for doing experiments in computer-science
- Computer-science is not yet at the same level than other sciences
- But things are improving...

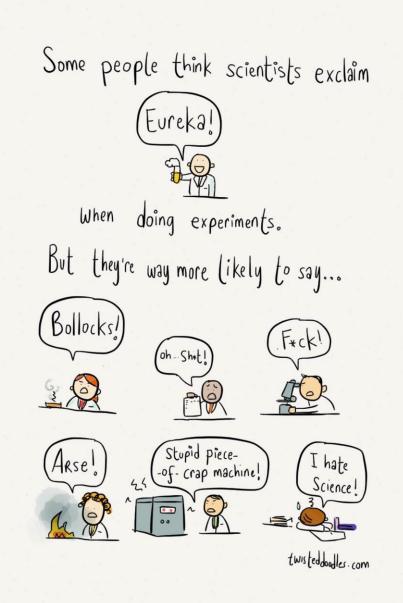
Conclusions

- Computer-Science is also an experimental science
- There are different and complementary approaches for doing experiments in computer-science
- Computer-science is not yet at the same level than other sciences
- But things are improving...
- Grid'5000: a test-bed for experimentation on distributed systems with a unique combination of features
 - Hardware-as-a-Service cloud
 - redeployment of operating system on the bare hardware by users
 - Access to various technologies (CPUs, high performance networks, etc.)
 - Networking: dedicated backbone, monitoring, isolation
 - Programmable through an API
 - Energy consumption monitoring
- Useful and used platform
 - More than 750 publications with Grid'5000 in their tag (HAL)
 - Between 500 and 600 users per year since 2006

In 2016:

Grid'5000 school

Grenoble, February 2-5



QUESTIONS?

Special thanks to
G. Antoniu, F. Desprez,
Y.Georgiou, D. Glesser, A. Lebre,
L. Lefèvre, M. Liroz, D. Margery,
L. Nussbaum, C. Perez,
L.Pouillioux
and the Grid'5000 technical team

www.grid5000.fr

